

DUBAI BRITISH SCHOOL
 EMIRATES HILLS

Primary Maths Calculation Policy Pencil and Paper Procedures

This procedure is reviewed annually to ensure compliance with current regulations

Approved/reviewed by	
Head of Primary \& Secondary	
Date of review	August 2023
Date of next review	August 2024

Introduction

Over the years much has changed in the teaching and learning of maths. The calculation methods used by children today are in many cases different from those used by adults when they were at school. This can cause anxiety, with parents and carers unsure whether or not they should teach children particular methods.

The purpose of this booklet is to provide guidance and information about the types of calculation methods that the children at Dubai British School are being taught and are using from Foundation up to Year 6.

The calculation methods taught today gradually build on the children's understanding over a period of time. They have been introduced after research programmes have shown them to be effective. The aim is to teach children calculation methods which they understand, can use correctly, and can use confidently to solve problems.

The Primary National Strategy gives a great deal of emphasis to children learning to use a whole range of mental calculation methods properly, before they move on to written calculations. These mental methods will involve the children writing or drawing things to help them. These are often called "jottings" and might well involve using a number line.

This does not mean that written methods are not seen as important. It is expected that children in Year 6 will have a written method for each operation $+-x \div$ which they can use reliably to solve problems. The written methods that children use will not necessarily involve lining the numbers up in columns, since there are other effective methods which we will look at in this booklet.

Notes to accompany the Calculation Policy

1. The columns for each year group are intended to be for the standard level. Teachers use their year group as a starting point for planning, but in order to meet the needs of the individuals there will be need to look forward or back.
2. When using a number line, show counting on above the line and counting back below the line. Include an arrow to show direction.

3. Using calculators is encouraged for checking answers in all year groups. In years 5 and 6 , when written methods are secure, calculators can be used if it is the most efficient method of calculation.
4. Estimating is encouraged from foundation to year 6 by the use of apparatus, rounding and using the inverse operation.
5. The methods of calculations taught within each year group should be applied to other areas, including measurement and problem solving.

PRIMARY MATHS CALCULATION POLICY

Year 3	Year 4 Add
+= signs and missing numbers Continue using a range of equations as in Year 1 and 2 but with appropriate, larger numbers.	$\pm=$ signs and missing numbers Continue using a range of equations as in Year 1 and 2 but with appropriate numbers. Partition into tens and ones and recombine
Partition into tens and ones and recombine Partition both numbers and recombine. $\begin{array}{rlrlr} 47+36 & =40+7+30+6 & \text { OR } & & 47+36 \\ & =70+13 & & \\ & =83 & & 70+13=83 \end{array}$	Either partition both numbers and recombine or partition the second number only e.g. $\begin{aligned} 55+37 & =55+30+7 \\ & =85+7 \\ & =92 \end{aligned}$
Refine to partitioning the second number only e.g. $\begin{aligned} 36+53 & =53+30+6 \\ & =83+6 \\ & =89 \end{aligned}$	$55 \quad 85 \quad 92$ Add the nearest multiple of 10, then adjust Continue as in Year 2 and 3 but with appropriate numbers e.g. $63+29$ is the same as $63+30-1$
$\begin{array}{lll}53 & 83 & 89\end{array}$	Pencil and paper procedures $358+73=431$ Either OR
Add a near multiple of 10 to a two-digit number	300+50+8 358
Continue as in Year 2 using number lines but with appropriate numbers e.g. $35+19$ is the same as $35+20-1$.	$\frac{+\quad 70+3}{\frac{300+120+11}{120}}=431$ $\frac{73}{11}$
pencil and paper procedures (Term 3)	$\frac{300}{431}$ Extend to decimals in the context of money (vertically) $£ 2.50+£ 1.75=£ 4.25$
$83+42=125$ $80+3 \quad \frac{\text { More able }}{83 \text { OR }}$	$\begin{aligned} & £ 2.50+£ 1.75=£ 4.25 \\ & £ 2.50 \\ & +£ 1.75 \end{aligned}$
$80+3$ $+40+2$ $120+5$	$\frac{\sum 4.25}{1}$
$\begin{array}{lcc} \underline{120+5}=125 & 120 & 5 \\ & \underline{5} & \underline{120} \\ & \underline{125} & \underline{125} \end{array}$	(Revert to expanded methods if the children experience any difficulty.)

Year 5

$\pm=$ signs and missing numbers Continue using a range of equations as in Year 1 and 2 but with appropriate numbers.

Partition into hundreds, tens and ones and

 recombineEither partition both numbers and recombine or partition the second number only e.g.
$358+73=358+70+3$

$$
\begin{aligned}
& =428+ \\
& =431
\end{aligned}
$$

358

- 43

Add or subtract the nearest multiple of 10

 or 100, then adjustContinue as in Year 2, 3 and 4 but with appropriate numbers e.g. $458+79=$ is the same as $458+80-1$
Pencil and paper procedures
Leading to formal method, showing numbers carried underneath.
358
+73
+431
$\frac{431}{11}$
Extend to numbers with at least four digits
3587
$+\quad 675$
4
Revert to expanded methods if the children experience any difficulty.
Extend to decimals (same number of decimals places) and adding several numbers (with different numbers of digits).
Model negative numbers using a number line.

Year 6

+= signs and missing numbers Continue using a range of equations as in Year 1 and 2 but with appropriate numbers.

Partition into hundreds, tens, ones and decimal fractions and recombine
Either partition both numbers and recombine or partition the second number only e.g.
$35.8+7.3=35.8+7+0.3$

$$
=42.8+0.3
$$

$$
=43.1
$$

35.8
42.8
43.1

Add the nearest multiple of 10.100 or 1000.

 then adjustContinue as in Year 2, 3, 4 and 5 but with appropriate numbers including extending to adding 0.9, 1.9, 2.9 etc

Pencil and paper procedures

Extend to numbers with any number of digits and decimals with 1 and 2 decimal places.
$124.9+117.25=242.15$
124.9
$+117.25$
$\underline{242.15}$

Revert to expanded methods if the children experience any difficulty.
Extend to decimals (either one or two decimal places).

Subtraction		
Foundation	Year 1	Year 2
Oral and Practical work Songs and rhymes Dice and number games Counting groups of objects and removing some and counting again - emphasising inverse of addition. Unifix cubes Cutting and sticking Number stories using objects, e.g. How many are there altogether? How many are there now? (after some have been removed.) Pictures / marks Take away two $5-2=$ Finding 1 less than a given number Number tracks $5-1=$ Counting back Counting back in 1 's orally from different totals up to 20. End of term 3 - more able draw on prepared number lines. $\begin{array}{lllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$	Oral and practical Continue as in foundation with apparatus, including bead strings and unifix, using numbers within 20. Pictures / marks Sam spent 4p. What was his change from 10p? Extend to Generating and solving number sentences with Numicon $-=$ signs and missing numbers 7-3 = • $\quad=7-3$ $7-\boldsymbol{=} 4=--3$ - $-3=4 \quad 4=7-$ - - $-\nabla=4 \quad 4=\cdot-\nabla$ Number lines (numbered and semi structured) 11-7 (Counting back) The difference between 7 and 11 $\begin{array}{lllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$ Recording by - drawing jumps on prepared lines - constructing own lines (Teachers model jottings appropriate for larger numbers)	$-=$ signs and missing numbers Continue using a range of equations as in Year 1 but with appropriate numbers. Extend to $14+5=20$ - - Find a small difference by counting up $42-39=3$ 39 40 42 Subtract 9 or 11. Begin to add/subtract 19 or 21 $35-9=26$ Use known number facts and place value to subtract (partition second number only) $\begin{aligned} & 37-12=37-10-2 \\ &=27-2 \\ &=25 \end{aligned}$ -2 -10

PRIMARY MATHS CALCULATION POLICY

Sharing out between people by giving 1 each - is there an easier
way to do this? E.g. 2 at a time.

Each friend gets 3 cookies

Pictures / marks

12 children get into teams of 4 to play a game. How many teams are there?

Cutting cakes/pizzas in half, sharing relating to fractions, e.g. finding half of a group of objects.

Knowing halves of even numbers to 20 .

$6 \div 2$ can be modelled as:

Grouping - There are 6 sweets. How many people can have 2 each? (How many 2's make 6?)

Sharing - 6 sweets are shared between 2 people. How many do they have each?

Understanding the relationship between x and \div (using the inverse)
$12 \div 3=4$
$12 \div 4=3$

